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ABSTRACT 
 

Structural damage detection is a field that has attracted a great interest in the scientific 

community in recent years. Most of these studies use dynamic analysis data of the beams as 

a diagnostic tool for damage. In this paper, a massless rotational spring was used to 

represent the cracked sections of beams and the natural frequencies and mode shape were 

obtained. For calculation of rotational spring stiffness equivalent of uncracked and cracked 

sections, finite element models and experimental test were used. The damage identification 

problem was addressed with two optimization techniques of different philosophers: ECBO, 

PSO and SQP methods. The objective functions used in the optimization process are based 

on the dynamic analysis data such as natural frequencies and mode shapes. This data was 

obtained by developing a software that performs the dynamic analysis of structures using the 

Finite Element Method (FEM). Comparison between the detected cracks using optimization 

method and real beam shows an acceptable agreement. 
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1. INTRODUCTION 
 

The occurrence of cracks in reinforced concrete elements under service loads is expected 

due to the low tensile strength of concrete, weathering, creep and aging effects. Cracking in 

reinforced concrete structures has an effect on structural performance including stiffness, 

energy absorption, capacity and ductility. Reduction in the strength and stiffness properties 

of a structure can be dangerous and may lead to catastrophic structural failures. The effect of 
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location and depth of cracks on the static and dynamic behavior of concrete structural 

element has been the subject of several studies and investigations.  

One of the first studies on crack detection is the one by Adams et al. [1] that used both 

sensitivity and finite element method to determine crack location and depth. Gudnundson [2] 

in their investigation, used perturbation as well as transfer matrix method to study the 

influence of small cracks on the Eigen frequencies and Eigen modes of slender structures.  

 The modal assurance criterion (MAC) was used by West [3] to determine the level of 

correlation between modes from the test of an undamaged Space Shuttle Orbiter body flap 

and the modes from the test of the flap after it was exposed to an acoustic loading. 

The coordinate modal assurance criterion (COMAC) is a mode shape based damage indicator 

proposed by Lieven and Ewins [4]. Qian et al. [5] used a finite element model to determine the 

natural frequencies of a cantilevered beam, taking into account, the effect of crack closure. Also, 

a method based on the relationship between the crack and modal parameters, to determine the 

crack position from known natural frequencies was developed. Chondros et al. [6] developed a 

continuous cracked beam theory for free vibration analysis; their basic assumption was that the 

crack caused a continuous change in flexibility in its neighborhood which they modelled by 

incorporating a consistent displacement field with singularity. A different but related approach in 

which a crack in rotational shaft is replaced by a mass-less spring-link located at the crack 

position became popular due to much effort by Dimarogonas and Papadopolous [7]. Kheyroddin 

[8] proposed new models for estimating the flexural rigidity and deflection of R.C. beams to 

account for the influencing parameters. Ismail et al. [9] determined the location of damage due to 

single cracks and honeycombs in R.C. beams using mode shape derivatives from modal testing. 

Experimental modal analysis was performed on the beams with cracks prior to and after each 

load cycle, on a control beam and beams with honeycombs. In studies of Labib et al. [10, 11], 

rotational spring model was used and natural frequencies of beams and frames with multiple 

single-edge cracks were obtained. Aktas and Sumer [12] modelled pre-damaged RC beams in 

finite element program and indicated that inclusion of pre-damage levels by means of cracks into 

the cross sections have significant effect on beams moment capacity. Gerist et al. [13] presented 

a new method to detect the structural damages. In this method, the sensitivity matrices of 

structural responses with respect to elemental damages were evaluated by finite difference 

method with various finite difference increments at first. Then, various systems of equations 

were formed for the structure and solved by BP. Shakti et al. [14] investigated the influence of 

parameters like crack depth and crack inclination angles, on the dynamic behaviour of 

deteriorated structures excited by time-varying mass. Analysis of the structure was carried out at 

constant transit mass and speed. Sarvi et al. [15] used Levenberg-Marquardt algorithm to 

update the truss structural finite element model. Kaveh and Mahdavi [16] in their study, 

considered an elemental stiffness reduction factor, to introduce the damage in the element of 

steel trusses. The reduction factor (αi) indicates the damage severity at the ith element in the 

finite element model whose values are between 1 for an element without damage and 0 for a 

ruptured element. They used the new optimization algorithms called Colliding Bodies 

Optimization (CBO) and Enhanced Colliding Bodies Optimization (ECBO) (see Kaveh [17] for 

further explanation of recently developed metaheuristics). An efficient method for structural 

damage localization based on the concepts of flexibility matrix and strain energy of a 

structure was suggested by Nobahari and Seyedpoor [18]. An efficient indicator for 

structural damage localization using the change of strain energy based on static noisy data 
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(SSEBI) was proposed by Seyedpoor and Yazdanpanah [19]. Eroglu and Tufekci [20] 

introduced a finite element formulation for straight beams with an edge crack, including the 

effects of shear deformation and rotatory inertia. The main purpose of these studies is to present 

a more accurate formulation to improve the beam models used in crack detection problems. 

Shayanfar et al. [21] used time-domain responses for damage detection of a bridge structure. 

The method proposed by them include, measuring acceleration responses of the time-domain 

and also creating a finite element model of the structure, based on the equations of motion of the 

bridge under a moving load. Afterwards, an objective function for solving the inverse problem of 

damage detection was defined; and by using ECBO algorithm, the problem was solved.  

In the study of Sabuncu et al. [22], the effects of number of stories, static and dynamic load 

parameters, crack depth and crack location, on the in-plane static and dynamic stability of 

cracked multi-storey frame structures subjected to periodic loading, were investigated 

numerically using the Finite Element Method. 

In this study, the natural frequencies of concrete beams with multiple single-edge cracks were 

obtained. The rotational spring model was used to represent the crack sections. For crack 

detection in concrete beams, the following steps were taken: 

 Use of finite element analysis and Matlab code for calculation of the stiffness of rotational 

spring equivalent of intact rectangular concrete section. 

 Experimental test using finite element analysis for determination of the effect of crack's depth 

on stiffness of rotational spring and a new equation for reduction of stiffness due to crack's 

depth proposed. 

 The objective functions was obtained and used for updating the stiffness matrix of model in 

the optimization process. 

 Stiffness matrix of beams was updated with optimization process and their crack location and 

depth were detected. 

 

 

2. MODELS OF CRACKS 
 

A rotational spring model has been used in many studies to identify cracks in beams [10, 

23]. In this study, the cracked beams were modelled by elements and components connected 

by hinge and less–mass rotational spring to determine the effects of cracking on bending 

behavior of beams. As shown in Fig. 1, the Bernoulli–Euler beam was divided into two 

halves at the crack location. The beam sections were then pinned together and a rotational 

spring was used to model the increased flexibility due to the crack. It is assumed that the 

axial stiffness of the beam at the crack location remained intact. 
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Figure 1. Simple supported cracked beam modelling by torsional springs 

 

Because crack in concrete beams develops in early stages of loading, the behaviour of 

material is still linear and the reserved strain energy in beam equals the work done by the 

force. In Eq. (1), strain energy for cracked beam was calculated. 

 

𝑊 = 𝑈 = 𝑈𝑏 + 𝑈𝑠 ;    𝑈𝑏 = ∫
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(1) 

 

where 𝑘𝑠𝑖 is stiffness of rotational spring equivalent of cracked section 𝑖, 𝑀𝑠𝑖 is bending 

moment in crack location and Ns is number of cracked section. 

 

 

3. STIFFNESS OF SPRING EQUIVALENT OF CRACKED SECTION 
 

To study the effect of cracking on concrete beam stiffness, experimental samples with 

rectangular section were built and cracks with different depths were made in them. These 

samples were loaded in 3 points as shown in Fig. 2, and their load-displacement diagrams 

were plotted. Changes in crack depths result in inclination change as shown in the diagram. 

Plates with 0.1 mm thickness were used in two layers to develop cracks in the samples. 

Therefore, the width of the crack was 0.2 mm. The applied concrete properties are shown in 

Table 1. 

 
Table 1: Concrete properties of the test beams 

   𝜐 𝑤𝑐 (
𝑘𝑔

𝑚3)  𝐸𝑐(𝑀𝑃𝑎)  𝑓𝑐
′(𝑀𝑃𝑎)  

0.21 2320 33200 48 

 

The height and width of the samples are 𝑑 = 200 𝑚𝑚 and 𝑏 = 150 𝑚𝑚, respectively, 

and their length is 𝐿 = 1000 𝑚𝑚. As shown in Fig. 2, these samples were tested after 

processing on the 28th day. 
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(a) 

 

(b) 

Figure 2. Experimental test. a: Test setup b: Test sample 

 

After loading, displacement of middle section of the beam was measured and the 

equivalent stiffness of the beam (𝐾𝑒𝑏) was calculated. In Eq. (2), strain energy for test 

sample was calculated. 
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(2) 

 

𝑘𝑏 is stiffness of intact beam and that for test sample is: 

 

𝑘𝑏 =
48𝐸𝐼

𝐿3
= 159360  𝑁 𝑚𝑚⁄  (3) 

 

Stiffness of rotational spring equivalent of cracked section in the middle of beams 

obtained using Eqs. (2) and (3) are presented in Table 2. 

 

 

 



H. Mazaheri, H. Rahami and A. Kheyroddin 

 

334 

Table 2: Stiffness of rotational spring equivalent of cracked section in the experimental samples 

𝐾𝑠

(
𝑁.𝑚𝑚

𝑟𝑎𝑑
)
 

𝐾𝑒𝑏

𝐾𝑏
 

𝐾𝑒𝑏

(𝑁/𝑚𝑚)
 

Displacemen

t of failure 

(𝑚𝑚) 

Force of 

failure 

(𝑁) 

𝑑𝑐𝑟

ℎ
 

𝑑𝑐𝑟

(𝑚𝑚)
 

ℎ
(𝑚𝑚)

 Beam No 

1.2e12 0.99 158061 0.105 16596 0 0 200 CB0 1 

1.46e11 0.94 149200 0.11 16412 0.1 20 200 CB10 2 

5.57e10 0.85 135200 0.115 15548 0.2 40 200 CB20 3 

2.096e10 0.67 108041 0.120 12965 0.3 60 200 CB30 4 

1.44e10 0.59 94200 0.096 9045 0.5 100 200 CB50 5 

 

In order to complete the required information and control the obtained results, the tested 

beam was modelled in Abaqus software, and its behavior under 3 point-loading was 

investigated. The analysis of cracked and uncracked beams by Abaqus finite element 

software also shows that with increase in crack depth, the beam stiffness decreases. The 

quality of variation of rotational spring stiffness equivalent to section, according to the crack 

depth, is demonstrated in Fig. 3. 

 

 
Figure 3. Stiffness of rotational spring stiffness in experimental and FE models 

 

According to this diagram, the decrease in spring stiffness versus the crack depth is not 

linear; on the other hand, the relation is valid in border conditions. If the crack depth is zero, 

the spring stiffness will tend to infinity and if the crack depth equals the beam height, then 

its value will be zero. Accordingly, the rotational spring stiffness equivalent to cracked 

section is suggested as Eq.(4). 

 

𝑘𝑠 = 0.70 [(
ℎ

𝑑𝑐𝑟
)
1.2

− 1]
𝐸𝐼

ℎ
 (4) 

 

where, ℎ is height of beam section, 𝑑𝑐𝑟 is depth of crack and 𝐸𝐼 is bending rigidity of beam 

section. Change in the concrete properties during the construction of the samples, due to 

human error, caused differences in the graphs as shown in Fig. 4. 
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4. STIFFNESS MATRIX OF MODELS 
 

There are three degrees of freedom 𝛿 = {𝜃𝐿, 𝑑𝑦, 𝜃𝑅} in cracked section of the 2D beams as 

shown in Fig.1. 𝜃𝐿 and 𝜃𝑅 are rotations at near end of beam elements at the left and right 

sides of rotational spring, respectively, and 𝑑𝑦 is displacement of node. The stiffness matrix 

of the cracked beam can be written as Eq.(5). In this matrix, the array corresponding to the 

displacement of the common point of the beams equals the sum of the stiffness of two beam 

elements, and the array corresponding to the rotation of the beam elements end adjacent to 

the middle node equals the sum of the rotational stiffness of the beam and the rotational 

spring. 

 

[𝐾] = [

𝐾11 𝐾12 𝐾13

𝐾12
𝑡 𝐾22 𝐾23
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] ; 𝐾11 =

[
 
 
 
 
 

𝑘𝑠1 0 −𝑘𝑠1

0
12𝐸𝐼

𝐿1
3

6𝐸𝐼
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; 𝐾12 =

[
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2 −
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3 0
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 ;  𝐾13 = 𝑧𝑒𝑟𝑜𝑠(3) 
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; 𝐾23 =
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(5) 

 

where 𝑘𝑠𝑗 is stiffness of rotational spring equivalent of cracked section 𝑗, 𝐸𝐼 is bending 

rigidity, 𝐿𝑖 is length of element 𝑖 and [K] is proposed global stiffness matrix. 

Global stiffness matrix [K] can be used to obtain the natural frequency and mode shape of 

undamped beam in free vibration analysis. It is generally known that the Eigen value 

equation of an undamped structure is as follows: 

 

[𝐾 − 𝜔2𝑀]{𝜙} = 0 (6) 

 

where 𝑀 is mass matrix, 𝐾 is global stiffness matrix, 𝜔 is natural frequency and 𝜙 is mode 

shape of beam. Matlab code was used to obtain natural frequency and mode shape of beam. 

In order to test the accuracy and convergence of the present method, the effects of edge-

cracks on the natural frequencies of a cantilever beam that has been studied extensively by 

Wendtland [24] experimentally and by Gudmundson [2], Kisa et al. [25] and Labib et al. 

[10] numerically, were examined. The cantilever beam was modeled by rotational spring in 

cracked section as shown in Fig. 4. 

 

 

(a) 
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(b) 

Figure 4. Cantilever beam with an edge-crack. a: Geometry b:proposed model 

 

In the cracked section, the stiffness of equivalent rotational spring was calculated using 

Eq.(4), and in uncracked section, it was ∞ theoretically. For numerical analysis, it is 

assumed that 
𝑑𝑐𝑟

ℎ
= 0.01. Therefore, the stiffness of rotational spring equivalent of intact 

section (ks0) can be obtained using Eq. (7). 

 

𝑘𝑠0 = 0.70[(100)1.2 − 1]
𝐸𝐼

ℎ
= 175

𝐸𝐼

ℎ
 (7) 

 

The first three natural frequencies of a cantilever beam (Fig. 4) with length of 0.20 𝑚, 

depth ℎ = 0.0078 𝑚, mass per unit length 𝜌 = 1.5308 𝑘𝑔/𝑚 and bending rigidity 𝐸𝐼 =
231.548 𝑁.𝑚2 [10], having a single open crack, are shown in Table 4. Different variations 

of the crack to depth ratio 
𝑑𝑐𝑟

ℎ
 and crack locations were employed. Eqs. (4) and (5) were used 

to obtain the equivalent spring stiffness, and global stiffness matrix and natural frequency of 

beam, respectively. The predicted Eigen frequency changes calculated from the proposed 

Equation were compared with the numerical data obtained by Kisa et al. [25] and Labib et 

al. [10] for the first three Eigen frequencies.(Table 3). 

 
Table 3: Natural frequencies of a cantilever beam with a single crack located at a distance 

 𝜉 = 0.2. 𝐿 

𝑑𝑐𝑟

ℎ
 

𝐾𝑠 (
𝑁.𝑚𝑚

𝑟𝑎𝑑
) 𝜔1 (

𝑟𝑎𝑑

𝑠
) 𝜔2 (

𝑟𝑎𝑑

𝑠
) 𝜔3 (

𝑟𝑎𝑑

𝑠
) 

Present [10] Present [25] [10] Present [25] [10] Present [25] [10] 

0 4.8e6 - 1038.29 1037.01 1038.2 6510.28 6458.34 6506.3 18459.94 17960.56 18218 

0.2 113045 130000 1028.3427 1020.13 - 6509.69 6457.39 - 18403.70 17872 - 

0.4 38380 28800 1009.40 966.9 - 6508.60 6454.48 - 18297.65 17596.57 - 

0.6 16200 8400 973.1 842.2 - 6506.55 6448.175 - 18098.13 16944 - 

 

 

5. THE PROPOSED DAMAGE DETECTION METHOD 
 

The choice of objective function and constraints is critical for all constrained optimization 

problems. The objective is a function of the system parameters that will be adjusted by the 

algorithm. A carefully chosen objective function is needed to provide the algorithm with a 

means of determining the remaining design variables of the structure. In the present study, 

the discussion on cracks was limited to beams. The un–damped free vibration equation of 

this system is known as: 
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𝐾�̈� + 𝑀𝑈 = 0 (8) 

 

where 𝑀 and 𝐾 are the mass matrix and the stiffness matrix of the structure, respectively, 

and 𝑈 is the displacement vector. The solution of this equation is 𝑁 values of 𝜔2, the 

undamped system's natural frequencies. The Eigen value problem for the undamped system 

can be written as: 

 

[𝐾 − 𝜔2𝑀]{ϕ} = 0 → [𝑀−
1
2𝐾𝑀−

1
2{𝜙} − 𝜔2𝐼{𝜙}] = 0 

→ 𝑀−
1
2𝐾𝑀−

1
2{𝜙} = 𝜔2𝐼{𝜙} 

(9) 

 

This problem intends to find the natural frequencies 𝜔 and the mode shapes {𝜙} of the 

structure, given its stiffness and mass matrix. Assuming no volume or mass changes due to 

the cracks or other geometrical changes, the natural frequencies and the mode shapes will 

change if the stiffness matrix changes as shown in Eq.(10). 

 

𝐾𝑀−1{𝜙} = 𝜔2𝐼{𝜙} → 𝐾 = {𝜙}−1𝜔2𝐼{𝜙}𝑀  
𝐾𝑑𝑀−1{𝜙𝑑} = 𝜔𝑑

2𝐼{𝜙𝑑} → 𝐾𝑑 = {𝜙𝑑}−1𝜔𝑑
2𝐼{𝜙𝑑}𝑀  

𝐾𝑑 = 𝐾 + Δ𝐾 → Δ𝐾 = 𝐾 − 𝐾𝑑 = ({𝜙}−1Ω2{𝜙} − {𝜙𝑑}−1Ω𝑑
2{𝜙𝑑})𝑀  

(10) 

 

where Ω is the diagonal matrix and their arrays are square of Eigen frequency. 𝐾,𝜔, 𝜙 

represents the stiffness matrix, natural frequency and mode shape of the intact beam, 

𝐾𝑑 , 𝜔𝑑 , 𝜙𝑑 represents the stiffness matrix, natural frequency and mode shape of the cracked 

beam. Δ𝐾 is the stiffness reduction on the intact beam stiffness matrix due to the crack. 𝜔𝑑 

and 𝜙𝑑 are measured in the existing beam by sensors. For detection of the crack location and 

depth, it is necessary to minimize arrays of Δ𝐾, for this reason, the proposed objective 

function was introduced as shown in Eq. (11) 

 

min𝐹 =Δ𝐾 = ∑∑({𝜙}𝑖𝑗
−1

Ω𝑖
2{𝜙}𝑖𝑗 − {𝜙𝑑}𝑖𝑗

−1Ω𝑑𝑖
2 {𝜙𝑑}𝑖𝑗)

2
𝑀

𝑗=1

𝑁

𝑖=1

 (11) 

 

where, 𝑁 and 𝑀 are the number of modes shape considered and number of degree of 

freedom measured by sensors, respectively. For that, {𝜙} is an invertible matrix, it is 

necessary for 𝑁 = 𝑀. 

It should be noted that, as the damage locations are unknown for the damaged structure 

regarding real data applications, for this case, the element stiffness matrix of the healthy 

structure is used to estimate the parameters {𝜙}and Ω for minimizing the objective function. 

The crack occurrence in a beam can reduce the stiffness of rotational spring equivalent of 

cracked section. The stiffness matrix of the cracked beam, 𝐾, is then obtained through the 

assemblage of the intact element stiffness matrices and damage spring stiffness matrix. As a 

result, in this study, to construct a damage indicator, health index (𝐻𝐼) for spring stiffness 

was used according to Eq.(12). 
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[𝐾] = [𝑘𝑏] + 𝐻𝐼𝑛[𝑘𝑠0] (12) 

 

In order to form the optimization problem, damage will be quantified using a scalar 

variable or index 𝐻𝐼 whose values are between 0 and 1. The value 1, refers to no crack 

(𝑑𝑐𝑟 = 0) at all, whereas values close to zero (𝑑𝑐𝑟 ≅ ℎ) imply devastating damage in the 

corresponding section of the beam. The depth of cracked is obtained in cracked sections by 

Eq.(13). 

 

𝐻𝐼𝑛 =
𝑘𝑠𝑛

𝑘𝑠0

= 0.004 [(
ℎ

𝑑𝑐𝑟
)
1.2

− 1] → (
𝑑𝑐𝑟

ℎ
) = [250.𝐻𝐼 + 1]

−1
1.2 (13) 

 

 

6. OPTIMIZATION METHOD 

In the present study, the optimization problems were solved using the following three 

methods:  

 Enhanced Colliding Bodies Optimization (ECBO)  

 Particle Swarm Optimization (PSO)  

 Sequential Quadratic Programming (SQP).  

Colliding bodies optimization (CBO) is a new meta-heuristic search algorithm developed 

by Kaveh and Mahdavi [17]. In this technique, one object collides with another object and 

they move towards a minimum energy level. The CBO is simple in concept and does not 

depend on any internal parameter. The CBO is a multi-agent algorithm inspired by a 

collision between two objects in one dimension. Each agent is modeled as a body with a 

specified mass and velocity. A collision occurs between pairs of objects and the new 

positions of the colliding bodies are updated based on the collision laws. The ECBO uses 

memory to save some historically best solutions to improve the CBO performance without 

increasing the computational cost. In this method, some components of agents are also 

changed to jump out from local minimum. A Matlab code which was prepared by Kaveh and 

Ilchi Ghazaan was used for this purpose [26]. 

PSO is a population‐based optimization method built on the premise that social sharing of 

information among the individuals can provide an evolutionary advantage. The 

mathematical optimizer used in this study is a SQP method. SQP methods are the standard 

general purpose mathematical programming algorithms for solving nonlinear programming 

(NLP) optimization problems, Matlab programming language was used for this 

optimization. 

In this paper, damage detection of a prismatic beam with a specified length was studied. 

First, the beam was divided into a number of finite elements (beams and spring). Then, 

mode shapes of the healthy beam in measurement points were evaluated using the finite 

element method. A Matlab (R2013a) code was prepared here for this purpose. 

An example is the simply supported beam of Fig. 5, where there is crack in some of the 

sections of the beam; the cracked section and stiffness of rotational spring equivalent of this 

section is shown in Table 4. 
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Figure 5. Simple supported beam divided into 12 beam elements and 13 spring elements 

(sample1) 

(Beam properties: 𝐸 = 33.2 𝐺𝑝𝑎, 𝐴 = 1.2𝑒5 𝑚𝑚2, 𝐼 = 1.6𝑒9 𝑚𝑚4, 𝜌 = 285 𝑘𝑔/𝑚) 

 
Table 4: Crack's depth of various sections of beam and stiffness of equivalent spring 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 

𝑑𝑐𝑟

ℎ
 1 0 0 0.4 0 0 0.6 0 0.2 0 0 0 1 

𝐾𝑠 0 

2
.3

2
e1

3
 

2
.3

2
e1

3
 

1
.8

6
e1

1
 

2
.3

2
e1

3
 

2
.3

2
e1

3
 

7
.8

6
e1

0
 

2
.3

2
e1

3
 

5
.4

8
e1

1
 

2
.3

2
e1

3
 

2
.3

2
e1

3
 

2
.3

2
e1

3
 

0 

 

In Table 4, stiffness of spring equivalent of cracked and uncracked sections were 

calculated using Eqs.(4) and (7), respectively. The ratio of the proposed objective functions 

were calculated by optimization algorithms, ECBO and PSO algorithms and mathematical 

optimization; the ratio for simple support beams is shown in Fig. 6. 

 

 
Figure 6. Ratio of objective functions in ECBO and PSO algorithm 

 

HI index were obtained in optimization process and 
𝑑𝑐𝑟

ℎ
 ratio can be obtained by Eq.(13). 

The result for simple support beam cases is shown in Table 5 and Fig.7. 
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Figure 7. Cracked section results for simple support beam 

 

In this example, the proposed objective function provides some good results for the 

position and the extent of crack in the beam sections, although there are some errors between 

the real and the calculated damage. 
 

Table 5: Optimization results for simple support cracked beam 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 

MAT 

HI 0.002 0.999 0.999 0.007 1 1 0.0039 1 0.023 0.99 0.98 0.99 0 

𝑑𝑐𝑟

ℎ
 0.922 0.01 0.01 0.42 0.01 0.01 0.57 0.01 0.21 0.01 0.01 0.01 1 

PSO 

HI 1 1 1 0.008 1 1 0.0033 1 0.023 1 1 1 1 
𝑑𝑐𝑟

ℎ
 0 0.01 0.01 0.4 0.01 0.01 0.606 0.01 0.204 0.01 0.01 0.01 0.01 

ECBO 

HI 0 1 1 0.008 1 1 0.004 1 0.023 1 1 1 0 
𝑑𝑐𝑟

ℎ
 1 0.01 0.01 0.39 0.01 0.01 0.599 0.01 0.201 0.01 0.01 0.01 1 

 

In another example, two bays beam with several cracked section as shown in Fig. 8 were 

examined. The cracked section and stiffness of rotational spring equivalent of this section 

are shown in Table 6. Beam properties are same with that of sample. 

The result of crack detection for two bays beam cases is shown in Table 7 and Fig. 9. 

 

 
Figure 8. Two bays beam divided in 14 beam elements and 15 spring elements (sample 2) 
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Table 6: Crack's depth of various sections of two bays beam and stiffness of equivalent spring 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝑑𝑐𝑟

ℎ
 0 0.5 0 0 0.2 0 0 0.4 0 0.4 0 0 0 0 1 

𝐾𝑠 

2
.3

2
e1

3
 

1
.2

1
e1

1
 

2
.3

2
e1

3
 

2
.3

2
e1

3
 

5
.4

8
e1

1
 

2
.3

2
e1

3
 

2
.3

2
e1

3
 

1
.8

6
e1

1
 

2
.3

2
e1

3
 

1
.8

6
e1

1
 

2
.3

2
e1

3
 

2
.3

2
e1

3
 

2
.3

2
e1

3
 

2
.3

2
e1

3
 

0
 

 
Table 7: Optimization results for tow bays cracked beam 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

MAT 

HI 

1
 

0
.0

0
5
9
 

1
 

1
 

0
.0

2
3
9
 

1
 

1
 

0
.0

0
8
1
 

1
 

0
.0

0
8
2
 

1
 

1
 

1
 

1
 

1
 

𝑑𝑐𝑟

ℎ
 

0
.0

1
 

0
.4

7
 

0
.0

1
 

0
.0

1
 

0
.1

9
8
 

0
.0

1
 

0
.0

1
 

0
.3

9
8
 

0
.0

1
 

0
.3

9
5
 

0
.0

1
 

0
.0

1
 

0
.0

1
 

0
.0

1
 

0
 

ECBO 

HI 

1
 

0
.0

0
5
5
 

1
 

1
 

0
.0

2
1
9
 

1
 

1
 

0
.0

0
6
5
 

1
 

0
.0

0
7
3
 

1
 

1
 

1
 

1
 

0
 

𝑑𝑐𝑟

ℎ
 

0
.0

1
 

0
.4

8
6
 

0
.0

1
 

0
.0

1
 

0
.2

1
1
 

0
.0

1
 

0
.0

1
 

0
.4

4
7
 

0
.0

1
 

0
.4

2
1
 

0
.0

1
 

0
.0

1
 

0
.0

1
 

0
.0

1
 

0
 

PSO 

HI 
0

.9
2

1
 

0
.0

0
5

 

1
 

1
 

0
.0

2
3

 

1
 

1
 

0
.0

0
8

 

1
 

0
.0

0
8

 

1
 

1
 

1
 

1
 

0
 

𝑑𝑐𝑟

ℎ
 

0
.0

1
1
 

0
.4

7
 

0
.0

1
 

0
.0

1
 

0
.2

 

0
.0

1
 

0
.0

1
 

0
.4

 

0
.0

1
 

0
.4

0
 

0
.0

1
 

0
.0

1
 

0
.0

1
 

0
.0

1
 

0
 

 

 
Figure 9. Cracked section results for tow bays beam 

 

In the next example, it is assumed that uniform damage in two bays beam (sample 2) 

occurred. Module of elasticity of concrete in this sample is 𝐸𝑐 = 26560 𝑀𝑃𝑎. The stiffness of 
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rotational spring equivalent of beam sections are shown in Table 8. 

The result of crack detection for two bays beam cases is shown in Fig. 10. 

 
Table 8. Stiffness of spring equivalent of beam sections 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝐾𝑠 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

1
.8

6
e1

3
 

0
 

 

 
Figure10. Cracked section results for two bays beam with uniform damage 

 

In the uniform damage case, the proposed objective function criteria led to an acceptable 

match between the real damage and the calculated crack in the beam sections. 

The one story concrete frame shown in Fig. 11 has several cracked sections in the beam 

and columns. The beam and columns have the same cross-sectional dimensions: 300 ×
300 𝑚𝑚 . Therefore, the stiffness of rotational spring equivalent of uncracked section is: 

 

𝐾𝑠0 = 175
𝐸𝐼

ℎ
= 1.3𝑒13 𝑁.𝑚𝑚/𝑟𝑎𝑑 

 

The crack to depth ratio for the cracked sections of beam and columns are shown in Table 9. 

 

 
Figure 11. Model of one by concrete frame 
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Table 9: Cracked section in one storey frame 

Cracked Node 2 4 8 13 19 

𝑑𝑐𝑟

ℎ
 0.4 0.3 0.6 0.3 0.2 

 

To detect the cracks, the proposed objective function and optimization algorithms were 

used. Stiffness of rotational spring equivalent of cracked section was obtained from 

optimization program shown in Table 9. The crack to depth ratio obtained by Eq. (13) is 

shown in Table 10 and Fig.12. The corresponding results of estimated damage extent show 

that the exact value can be obtained using the proposed objective function with used 

optimization algorithms. 

 
Table 10: The crack to depth ratio for the cracked sections of frame 

Cracked 

Node 

MAT(SQP) PSO ECBO 
𝐾𝑠

𝐾𝑠0

 
𝑑𝑐𝑟

ℎ
 

𝐾𝑠

𝐾𝑠0

 
𝑑𝑐𝑟

ℎ
 

𝐾𝑠

𝐾𝑠0

 
𝑑𝑐𝑟

ℎ
 

2 0.009 0.374 0.0082 0.395 0.0088 0.377 

4 0.0145 0.279 0.0136 0.291 0.0138 0.288 

8 0.0037 0.579 0.0033 0.606 0.0034 0.599 

13 0.0138 0.288 0.0141 0.284 0.013 0.299 

19 0.026 0.187 0.024 0.198 0.023 0.204 

 

 
Figure 12. Cracked section results for frame 

 

To accurately calculate the depth and location of the cracks, it is necessary to place the 

node of the finite element model on the cracked section. If the sections of the finite element 

model do not match the crack location, the crack depth obtained will not be accurate; 

therefore, increase in the number of nodes will lead to increase in the accuracy of crack 

detection. 
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7. CONCLUSIONS 
 

The main purpose of the current study was to identify crack in concrete beams, both in 

position and in depth, by using some distinct and easily measured dynamic characteristics of 

the beams. To solve this damage identification problem, the cracked beam was essentially 

idealized by two sub-beams connected through a massless elastic rotational spring at the 

crack location and the following three optimization algorithms were used:  

I. Enhanced Colliding Bodies Optimization (ECBO), which is a meta-heuristic search 

algorithm.  

II. Particle Swarm Optimization (PSO), which is a population based optimization method.  

III. Sequential Quadratic Programming (SQP), which is a mathematical optimization method.  

Stiffness of rotational spring equivalent of uncracked section was proposed as Eq. (4) by 

finite element studies.  

Stiffness of rotational spring equivalent of cracked section was proposed as Eq. (14) by 

experimental studies. 

Objective function based on natural frequency and mode shape was proposed as Eq. (12) 

and optimization result showed that the proposed objective function can indicate the 

acceptable accuracy, position and depth of crack in beams. 

Uniform damage cannot be distinguished with objective functions based on mode shape 

alone.  

Increase in the number of nodes leads to increase in the accuracy of crack detection. 
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